亚洲第一无码专区天堂|国产日韩剧情一区二区|精品无码av人在线观看|日韩中文字幕一区二区不卡|亚洲精品无码专区二区三区|日韩人妻无码精品久久影院|日韩精品久久久免费观看蜜芽|亚洲国产精品欧美日韩一区二区

歡迎光臨南京遠(yuǎn)洋運(yùn)輸股份有限公司官網(wǎng)!
搜索 企業(yè)郵箱 公司OA 請(qǐng)選擇語(yǔ)言版本: En
求新 務(wù)實(shí) 立信 望遠(yuǎn)
知識(shí)庫(kù)
當(dāng)前位置:首頁(yè) > 學(xué)習(xí)園地 > 知識(shí)庫(kù) > 經(jīng)驗(yàn)交流 > 瀏覽文章

經(jīng)驗(yàn)交流

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦
時(shí)間:2010年08月28日   作者:佚名  點(diǎn)擊次數(shù): 【字體:

為實(shí)現(xiàn)艦船縱搖和升沉運(yùn)動(dòng)的解,基于保結(jié)構(gòu)同譜流算法,提出一種解變換的尋找方法,將尋找解變換的非線性問(wèn)題轉(zhuǎn)化為Sylvester方程的求解問(wèn)題,并利用矩陣Kronecker積的相關(guān)知識(shí)快速找到解變換.基于水池實(shí)驗(yàn)獲得的縱向運(yùn)動(dòng)數(shù)據(jù)進(jìn)行的數(shù)值實(shí)驗(yàn)仿真結(jié)果表明該方法確實(shí)可行.

關(guān)鍵艦船縱向運(yùn)動(dòng)保結(jié)構(gòu)同譜流;水動(dòng)力系數(shù);二階微分系統(tǒng)

中圖分類號(hào)U661.32 文獻(xiàn)標(biāo)志A

Numerical decoupling of ship vertical motion system

WANG Shu-juana,SHEN Ji-hongaLI Ji-deb

a.College of Science;b.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)

Abstract:To realize the ship vertical motion decouplinga method to find out decoupling transforms was proposed based on structure preserving isospectral flows (SPIF),which converting nonlinear problem in the process of finding out decoupling transforms into the solution of Sylvester equationand matrix Kronecker product knowledge was used for finding decoupling transforms out quickly.Numerical experiments based on pool experiment data show the feasibility of the proposed method.

Key words:ship vertical motion;structure preserving isospectral flows(SPIF);hydrodynamic parameters;quadratic system

0

船舶在海上的運(yùn)動(dòng)往往是幾種簡(jiǎn)單運(yùn)動(dòng)的疊加,可以概括為六個(gè)自由度的搖蕩運(yùn)動(dòng).船舶各自由度的運(yùn)動(dòng)是相互合的,因此,在研究船舶運(yùn)動(dòng)特性時(shí),通常假設(shè)六個(gè)自由度運(yùn)動(dòng)是相互獨(dú)立的.但實(shí)際上,船舶運(yùn)動(dòng)方程可以分解為兩組合方程,即縱向運(yùn)動(dòng)一一升沉、縱搖和縱蕩,橫向運(yùn)動(dòng)一一橫蕩、橫搖搖和.縱向運(yùn)動(dòng)中,縱蕩對(duì)升沉和縱搖的耦合作用較小,通常忽略.縱搖和升沉通常是在惡劣氣候里限制航速的主要因素,在大浪中對(duì)船體結(jié)構(gòu)有重大影響,因此研究艦船縱向運(yùn)動(dòng)具有重要意義[1-2].研究艦船縱向運(yùn)動(dòng)需要研究其解問(wèn)題,以去除搖和升沉運(yùn)動(dòng)的相互合影響.

基于船舶水動(dòng)力理論建立的縱向運(yùn)動(dòng)方程為型的二階微分系統(tǒng),為此,本文引二階系統(tǒng)解耦理論研究該問(wèn)題.數(shù)值代數(shù)領(lǐng)域通過(guò)保持Lancaster結(jié)構(gòu)來(lái)研究二階系統(tǒng)的解問(wèn)題[3-6],通過(guò)尋找等價(jià)變換來(lái)實(shí)現(xiàn)Lancaster結(jié)構(gòu)中塊陣的對(duì)角化,但該換的數(shù)值求解涉及非線性方程組求解問(wèn)題,難以實(shí)現(xiàn).在文獻(xiàn)[3-4]的基礎(chǔ)上,文獻(xiàn)[5]從理論上證明幾乎對(duì)所有的二階系統(tǒng)均存在等價(jià)變換將系統(tǒng)解耦,但并未給出等價(jià)變換的數(shù)值求解方法.文獻(xiàn)[6]提出應(yīng)用保結(jié)構(gòu)同譜流方法研究二階系統(tǒng)的解耦問(wèn)題,通過(guò)一系列的保結(jié)構(gòu)、保譜變換實(shí)現(xiàn)二階系統(tǒng).但該方法只能給出解后系統(tǒng)的形式,不能出相應(yīng)的解變換,這使得系統(tǒng)還原及系統(tǒng)分析無(wú)法進(jìn)行,而且該方法所定義的保譜流的保譜性質(zhì)有待進(jìn)一步完善.

本文提出一種解變換的尋找方法,將尋找解耦變換的非線性問(wèn)題轉(zhuǎn)化為Sylvester方程求解問(wèn)題,并利用矩陣Kronecker積的相關(guān)知識(shí)快速而便地給出二階系統(tǒng)的解變換.對(duì)水池試驗(yàn)獲得艦船縱向運(yùn)動(dòng)數(shù)據(jù)所建立的運(yùn)動(dòng)方程進(jìn)行解,數(shù)值試驗(yàn)結(jié)果表明該方法確實(shí)可行.

1 二階系統(tǒng)解方法

1.1 艦船縱向運(yùn)動(dòng)方程

根據(jù)船舶水動(dòng)力理論,在波浪中航行的船舶在水平舵作用下縱向運(yùn)動(dòng)方程可表示

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

z表示垂蕩;θ表示縱搖.將式(1)表示成矩陣形

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

M、CKF分別為質(zhì)量、阻尼、剛度和外力矩陣,且

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

則艦船縱向運(yùn)動(dòng)方程為典型的二階微分系統(tǒng)[1-2].

1.2 基于保結(jié)構(gòu)變換的二階系統(tǒng)解

設(shè)式(2)的齊次解x(t)有如下形

x(t)=eλtu 3

則數(shù)值λU向量為二階特征值問(wèn)題的非平凡解.

Q(λ)u=2M+λC+K)u=0 4

文獻(xiàn)[3-4]中提出了實(shí)現(xiàn)三矩陣的同時(shí)對(duì)角化的一種方法.很容易證明式(4)所描述的二階特征值問(wèn)題等價(jià)與廣義特征值問(wèn)

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,L(λ)Lancaster結(jié)構(gòu),

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

很明顯,M為非奇異時(shí),有

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

如果存在非奇異的2n×2n矩陣ΠtΠr表示的等價(jià)變換保持式(6)Lancaster結(jié)構(gòu),即

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

使得MD、CDKD均為對(duì)角矩陣,則式(3)表述的二階特征值問(wèn)題等價(jià)于完全解的系統(tǒng),即

λ2MD+λCD+KDz=0 9

MD,M均為非奇異情況下,特征向量uz具有如下關(guān)系

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

通過(guò)保持Lancaster結(jié)構(gòu),該方法將多自由度的系統(tǒng)直接與單自由度的系統(tǒng)鏈接起來(lái).根據(jù)Garvey等的思路,文獻(xiàn)[5-6]中給出將原始的n自由度系統(tǒng)解n個(gè)單自由度系統(tǒng)的集合的實(shí)值變換幾乎對(duì)所有的二階系統(tǒng)均存在,并通過(guò)保結(jié)構(gòu)同譜流的數(shù)值方法來(lái)研究二階系統(tǒng)的解.

1.3 基于同譜流的二階系統(tǒng)解

若令

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

定義兩個(gè)隨時(shí)間變化的保結(jié)構(gòu)變換TL(t)TR(t)R2n×2n,

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,tR,且TL(0)=TR(0)=I2n.TL(t)TR(t)非奇異,則A(t)B(t)(A0,B0)同譜.此時(shí)一類具有特殊形式的TL(t)TR(t)可定義為

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,Lij(t),Rij(t)(i,j=1,2)n×n階矩陣.則有

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

若保結(jié)構(gòu)由式(11)

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

(13)構(gòu)成了一個(gè)具有5n2個(gè)方程、8n2個(gè)未知數(shù)的線性系統(tǒng),系統(tǒng)的解具有3n2個(gè)自由度,即三個(gè)n×n階自由參數(shù)矩陣.在此按照文獻(xiàn)[6]的方式引參數(shù)矩陣D、NL、NR,使得

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

則此時(shí)定義了系統(tǒng)參數(shù)矩陣M、CK隨時(shí)間的發(fā)展方向集合,可以利用數(shù)值積分的方法來(lái)求解該微分系統(tǒng)的解.但該方法只能求出解后的系統(tǒng)參數(shù)MD、CDKD,卻無(wú)法求得解變換TLTR.

2 基于保結(jié)構(gòu)同譜流的系統(tǒng)對(duì)角化

2.1 保結(jié)構(gòu)同譜流的實(shí)現(xiàn)

系統(tǒng)參數(shù)矩陣M,C,K的同時(shí)對(duì)角化可用一個(gè)目標(biāo)函數(shù)來(lái)表示,即

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,‖·‖F表示矩陣的Frobenius范數(shù);offdiag(M)為矩陣M非對(duì)角線上的部分.(15)前半部分為三個(gè)系數(shù)矩陣非對(duì)角線上元素的平方和(全局最優(yōu)值為0),對(duì)應(yīng)于三矩陣的對(duì)角形式后半部分為系數(shù)矩陣對(duì)角線上元素的平方和.

(15)描述目標(biāo)數(shù)下降最快的方向?yàn)槠湄?fù)梯度方

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

系統(tǒng)參數(shù)矩陣MC,K沿著最接近目標(biāo)函數(shù)負(fù)梯度的方向發(fā)展變化,則在定的迭代步數(shù)后便可實(shí)現(xiàn)系統(tǒng)的對(duì)角化.按照矩陣的Kronecker積相關(guān)知識(shí),式(14)可表示為

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,vec(X)表示矩陣X的按列向量化.為使M,C,K沿著接近目標(biāo)函數(shù)負(fù)梯度的方向發(fā)展變化,給出自由參數(shù)矩陣DNL,NR的最小二乘估計(jì)

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中,X+表示矩陣XMoore-Penrose廣義逆.

2.2 變換的求解

若令

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

則尋找一對(duì)非奇異的Πl,和Πr,滿足

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

顯然,當(dāng)MMD非奇異時(shí),BBD非奇異,且

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

(16)變形,得

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

(17)中方程2可化為Sylvester方程的一般形

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

其中艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦為已知矩陣;X=Πr為待求矩陣.(18)可轉(zhuǎn)化為齊次線性方程組求解問(wèn)題,其方程式為

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

因?yàn)榻?/SPAN>前后系統(tǒng)具有相同的譜信,式(19)必有非零解,且不難找到非奇異的Πr=unvec(X).其中,vec表示矩陣的向量化函數(shù);unvec表示向量的矩陣化函數(shù)[7].

3 船舶運(yùn)動(dòng)系統(tǒng)解實(shí)例

對(duì)船模水池實(shí)驗(yàn)獲得的船舶縱向運(yùn)動(dòng)方程數(shù)據(jù)進(jìn)行解調(diào)算法仿真(其中,船舶重量為425 t,船長(zhǎng)為60 m).實(shí)驗(yàn)中船模航速為18 kn.12個(gè)頻率下的運(yùn)動(dòng)水動(dòng)力參數(shù).

表1 艦船縱向運(yùn)動(dòng)水動(dòng)力參數(shù)

遭遇頻率 a33 a35 a53 a55 b33 b35 b53 b55

1.308 5.45×102 1.37×103 2.41×103 9.55×104 5.26×102 9.75×103 -4.92×102 1.72×105

1.068 4.79×102 -2.05×102 2.82×103 7.81×104 7.98×102 1.00×104 8.06×102 2.26×105

利用Matlab編譯代碼,并調(diào)用其ode函數(shù)實(shí)現(xiàn)保結(jié)構(gòu)同普流算法及相應(yīng)的解變換方法.當(dāng)遭遇頻率為1.308時(shí),解變換及對(duì)應(yīng)的解后系統(tǒng)分別

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

1為三個(gè)參數(shù)矩陣對(duì)角線上元素的平方和與的目標(biāo)函數(shù)的變化曲線.由圖1可知,曲線最終趨于平穩(wěn).2為非對(duì)角線元素平方和的變化曲線.由圖2可知,曲線最終趨于零,實(shí)現(xiàn)了三個(gè)參數(shù)矩陣的同時(shí)對(duì)角化.

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

當(dāng)遭遇頻率為1.068時(shí),解變換及對(duì)應(yīng)的解后系統(tǒng)分別

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

3為三個(gè)參數(shù)矩陣對(duì)角線上元素平方和與目標(biāo)函數(shù)變化曲線;4非對(duì)角線元素平方和的變化曲.

艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解耦

從實(shí)驗(yàn)結(jié)果可以看出,該方法在極小誤差下實(shí)現(xiàn)了艦船縱向運(yùn)動(dòng)系統(tǒng)的數(shù)值解,保證了系統(tǒng)的同譜性質(zhì).給出的相應(yīng)的解變換進(jìn)一步完善了系統(tǒng)的耦理論.

4 結(jié)

本文將保結(jié)構(gòu)同譜流方法引艦船縱向運(yùn)動(dòng)的解研究中,通過(guò)選定合理的系統(tǒng)參數(shù)來(lái)實(shí)現(xiàn)縱搖升沉運(yùn)動(dòng)的解.對(duì)保結(jié)構(gòu)同譜方法進(jìn)行改進(jìn),將解尋找解變換的非線性問(wèn)題轉(zhuǎn)化為Sylvester程求解,并利用矩陣的卡式積理論給出解變換.據(jù)水池實(shí)驗(yàn)獲得的縱向運(yùn)動(dòng)數(shù)據(jù)進(jìn)行算法仿真,出浪向角為,航速為18 kn時(shí)兩個(gè)頻率下的艦縱向運(yùn)動(dòng)系統(tǒng)解結(jié)果.數(shù)值試驗(yàn)結(jié)果表明,該方可將原始艦船縱向運(yùn)動(dòng)系統(tǒng)解,并給出相應(yīng)的解耦變換.

考文獻(xiàn)(References)

[1]李積德.船舶耐波性[M].哈爾哈爾濱工程大學(xué)出版,2003.

[2]李積德,王淑娟,李,等.基于灰色動(dòng)態(tài)MGM(1,n)模型的艦船縱搖-升沉運(yùn)動(dòng)預(yù)報(bào)[J].船舶力學(xué),200812(1):31-36.

[3]GARVEY S D,FRISWELL M I,PRELLS U.Co-ordinate transforms for second order systemsI:General transforms[J].Journal of Sound and Vibration,2002258(5): 885-909.

[4]GARVEY S D,FRISWELL M IPRELLS U.Co-ordinate transforms for second order systems,II:Elementary structure-preserving transforms [J].Journal of Sound and Vibration2002,258(5):911-930.

[5]CHU M TBUONO N D.Total decoupling of a general quadratic pencil,Part I:Theory [J].Journal of Sound and Vibration,2008,309(1-2):96-111.

[6]CHU M T,BUONO N D.Total decoupling of a general quadratic pencil,Part II:Structure preserving isospectral flows[J]. Journal of Sound and Vibration,2008,309(l­2):112-128.

[7]張賢達(dá).矩陣分析與應(yīng)用[M].北京:清華大學(xué)出版社,2004.

作者:王淑娟,沈繼紅,李積德  來(lái)源:大連海事大學(xué)學(xué)報(bào)

關(guān)于我們

南京遠(yuǎn)洋運(yùn)輸股份有限公司是一個(gè)專門(mén)經(jīng)營(yíng)干散貨船舶運(yùn)輸?shù)膶I(yè)船東公司,成立于1988年,原名南京遠(yuǎn)洋運(yùn)輸公 司,1994年進(jìn) 行了股份制改 造,更為現(xiàn)名。

業(yè)務(wù)領(lǐng)域

南京遠(yuǎn)洋擁有船舶資產(chǎn),是以經(jīng)營(yíng)遠(yuǎn)洋貨物運(yùn)輸為主、又集國(guó)際船舶管理、國(guó)際船舶代理、海員勞務(wù)輸出、船舶物 料供應(yīng)和投資 咨詢服務(wù)為一體的綜合性遠(yuǎn)洋運(yùn)輸企業(yè)。

加入我們

我們堅(jiān)信:人才是發(fā)展之本!
我們依據(jù)各崗位職責(zé)的不同,參考當(dāng)前市場(chǎng)實(shí)際,為廣大員工提供富有競(jìng)爭(zhēng)力的薪資福利。

聯(lián)系我們

公司地址:南京市江東中路311號(hào)中泰國(guó)際廣場(chǎng)05幢18 樓 郵政編碼:210019
電話:025-58802148 87792001
傳真:025-58802147
微信公眾號(hào)

微信掃一掃關(guān)注我們